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We discuss the description of quantum mechanical systems with Hamiltonians 
depending on slowly varying parameters by means of fiber bundles. A new 
Heisenberg equation is obtained. The problem of particle creation is treated 
through Berry's connection. We consider also a particle in a well with a moving 
wall. This system is equivalent to a particle interacting with a vector field depen- 
dent on the coordinate and relative velocity of the wall. The geometrical phase 
in this case is found. 

1. INTRODUCTION 

In recent years much attention has been paid to classical and quantum 
dynamical systems with variable parameters. Such tasks are typical in many 
areas of physical investigation, for example, particle creation and annihila- 
tion in strong external fields, dynamical systems characterized by "slow" 
and "fast" variables, and systems with nonstationary boundary conditions. 
As a rule, such problems are not exactly soluble. Special methods have 
been proposed to study these problems--the "averaging" method in classical 
mechanics, and the adiabatic (WKB) approximation in quantum mechanics. 
The last is based on the Born-Fock hypothesis (Born and Fock, 1928) and 
Ehrenfest's theorems (Ehrenfest, 1959). 

Analyses of these old problems (Berry, 1984; Simon, 1983; Hannay, 
1985) led to a new evolutionary picture of classical and quantum physical 
systems with slowly changing parameters. In the simplest understanding of 
the adiabatic hypothesis, any state of a dynamical system should transit to 
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the state with the same quantum numbers in the case of an adiabatic 
variation of parameters (Messiah, 1981). Berry showed that when the 
Hamiltonian depends on several parameters that change adiabatically with 
time, there is another contribution to the phase factor acquired by the wave 
function of the system. This new phase is defined only by the geometry and 
topology of the parameter manifold. There are many physical effects due to 
this phase, among them the rotation of the polarization plane of a light 
beam (Tomita and Chiao, 1986) and the energy level shift in diatoms (Mead 
and Truhlar, 1979). 

The analogous result for classical evolution was found by Hannay 
(1985) for the generalized harmonic oscillator in "action-angle" variables. 
The geometrical interpretation of topological phase was proposed first by 
Simon (1983). 

Numerous papers devoted to the interpretation and calculation of 
Berry's (topological) phase, Berry's connection (see, for example, Jackiw, 
1988), and curvature have advanced our understanding of the phenomenon. 
Elegant mathematical work (Asch, 1990; Buslaev, 1988; Kiritsis, 1987; 
Montgomery, 1988) has made it possible to classify a U(1) connection. The 
adiabatic restriction on changing parameters was eliminated in recent work 
(Anandan and Aharonov, 1988; Wong, 1990). Moreover, noncyclic evolu- 
tion was investigated (Zak, 1989). But it is necessary to remark that problems 
connected with the geometrical and topological properties of state space 
were not studied. 

Now it is useful to combine the evolutionary picture with geometrical 
methods. The previous results were discussed by Uhlmann (1989) and Arodz 
and Babinch (1989). We believe that many well-known phenomena (break- 
down of symmetry, particle creation, etc.) can be treated in geometrical 
phase terms. 

This paper is devoted only to a small part of the problems connected 
with the Heisenberg equations for operators of physical variables and to a 
consideration of some physical and geometrical aspects of the dynamics of 
quantum mechanical systems with changing parameters and nonstationary 
boundary conditions. 

In the next section we give a geometrical treatment of the Schr6dinger 
equation and describe the essential points of our considerations. 

Section 3 is devoted to the problem of Berry's phase removability. The 
appearance of Berry's phase, the particle creation problem, and effective 
Hamiltonians are discussed in Section 4. 

Section 5 is devoted to an expansion of Berry's phase ideology to 
systems with time-dependent boundary conditions. 

Finally, Section 6 contains some conclusions. 
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2. FIBER BUNDLES AND QUANTUM MECHANICS 

2.1. States and Operators 

Let us consider a quantum mechanical system governed by the Hamil- 
tonian operator H. We assume that H is a time-independent operator and 
time-independent boundary conditions are applied on the wave function. 
Then the state of our system is described by the state vector [~,(x, t)) at any 
time. This state vector belongs to a Hilbert space. The evolution of the 
system is described by means of a wave function that satisfies the Schr6dinger 
equation. This picture can be reformulated in fiber bundle terms (Asorey et 
aL, 1982)~ 

Let ~ (~  R I, :~f) be the total fiber bundle space, where R ~ is a one- 
dimensional base space (or time axis), of' is an infinite-dimensional Hilbert 
space or typical fiber, and ~t : ~ ~ R 1 is the projection. In this "stationary" 
case all fibers are identical to each other; moreover, the frames of all typical 
fibers differ only by unitary transformations. The typical fiber frame is deter- 
mined by the set of time-independent solutions of the stationary Schr6dinger 
equation 

H I ~(x ,  t) ) = E.llp'(x, t) ) 

It is clear that the 1-form of connection in this fiber bundle is o-(x) = ~H dt 
and the Schr6dinger equation is the equation of parallel transport of the 
state vector from fiber Y( t )  to fiber o~(t+dt) .  So 

dl~r(x, t) ) = - i l l  dtltlt(x, t) ) (2.1) 

The connection iH dt is an anti-Hermitian operator acting in ~(~r, R 1, 0~o). 
Note that the fiber bundle ~(Jt, R 1, At ')~ Rl(~)~zf is a trivial one in our case. 
The evolution operator U(to, h ) = e x p [ ( i / h ) H ( h -  to)] defines the transport 
of the state vector along the path to ---> t~ in R ~. 

The operators of observables are governed by the Heisenberg equation 

d F +  [tit dt, dF] =0  (2.2) 

which can be treated as a parallel transport equation in the fiber bundle of 
operators ~(tr, R t, i~), where ~ is the typical fiber or the set of Hermitian 
operators acting in ~(zr, R 1, ~). These operators form the algebra of observ- 
ables. Note that geometrical constructions on the operator fiber bundle 
(connection, curvature, etc.) are defined only by means of the Hamiltonian 
H, so that this geometrical description is very simple. But the geometrical 
approach will be more far-reaching and useful in the consideration of systems 
with time-dependent Hamiltonians. 
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Let the Hamiltonian H(x, p, ai(t)) be a function of slowly changing 
parameters {a~(t)}. Formally, here the function ~,(x, t )= (xl~u) satisfies the 
Schr6dinger equation i~ d~u/at =H~g. It is possible to form the Hilbert space 
at any time and it can be regarded as a fiber in some fiber bundle. Each fiber 
is assigned the frame {In, a~(t)>}. The frame is the set of eigenfunctions of 
the instantaneous Hamiltonian 

H(p, x; ai(t))ln, a,(t) )= E,(a~(t))ln, ai(t) > (2.3) 

But the eigenfunctions belonging to different fibers (precisely, to different 
sheets of foliation) are not identical and are not connected by unitary trans- 
formations. We would like to underline that in the general case two fibers 
can be nonidentical to each other. To identify them we need to determine 
the special operator of mapping. We consider at this point only the usual 
case, when the fibers are identical but the frames of these fibers are different. 
This situation has been investigated in many papers (Asch, 1990; Berry, 
1984; Buslaev, 1988; Hannay, 1985; Jackiw, 1988; Kiritsis, 1987; Mont- 
gomery, 1988; Simon, 1983). Note that in general the frames need not be 
eigenvectors of a specific operator. Namely, the frame is a more basic object 
than the parametrical Hamiltonian. According to the fiber bundle theory, 
we can construct ~(~r, ,/r M'), where ~ is as usual the total fiber space, ,/r 
is the base space for the parametrical manifold [its structure is defined by 
the set {a~(t)} ], and M' is the fiber or liner shell of eigenvectors. It is clear 
that frames belonging to different fibers cannot be transported by means of 
the above connection 1-form 1H dt alone. To investigate an evolutionary 
picture for such a system, we need to determine a geometrical operator of 
parallel transport. This geometrical operator should be connected in some 
way with the connection l-form 

F,,n = (nldlm> (2.4) 

This connection was introduced by Simon (1983). But we think that 
the operator of eigenfnnction transformations can be identical to the connec- 
tion form (2.4) only in an infinitesimal neighborhood of any point of 4. In 
the general situation we have to introduce a special operator mapping of the 
fibers. This operator should coincide with the connection locally but is not 
equivalent to F,,n globally. We should introduce the mapping operator from 
a quantum mechanical point of view but not from a geometrical one. 

Let us mark the fibers by the letters m, n, k . . . . .  The mapping operator 
will be P(m, n) and it satisfies 

(a) PI~m>=Iv'.> 

(b) P(aI~'.~>+/~Iv',.>)--aPI~',.>+/~PIv'm>, a , / ~ C  

(c) <v/.,IP+-- <v/.I 
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(d) IfPl~..)=l~,.) and (~, .W.)=(Vt. . ]~/ . )=I ,  then P + P = I  

(e) P(m,n)=P- ' (n ,m)  

(f) P ( m , m ) = l  (2.5) 

So we can write 

i g , )  = Pt ~,,) -~ (1 + F +- �9 .).,d ~,,) (2.6) 

Now we use this mapping operator to investigate the evolution operator and 
Heisenberg equation. 

2.2. Evolution Equation and Observables 

Let us introduce the evolution operator as an operator which transports 
the state vector I~'(x, t)) to the state vector I~'(x, t+  at) ,  

l~(x, t+  a t )  = U ( t +  at, t)lVt(x, t)) (2.7) 

The evolution operator is not equal to the mapping operator, because the 
latter is a pure geometrical one and is not dependent on the Hamiltonian, 
but the evolution operator will be a functional of the Hamiltonian. 

We can rewrite the Schr6dinger equation as 

ih V,l g )  = H(p, x; ai(t))t Vt) (2.8) 

where 

P(t, t + at)I~(t + a t ) ) -  Iv(t))  
V,IVt) = lim (2.9) 

at~o at 

Using (2.7), it is easy to obtain the equation for the operator f~(t~, t2, t)= 
P(tl, t)U(t, t2), 

ih f~(h, t2, t) = P(tl, t)H(t)P(t, t2)f~(h, t2, t) 
at 

(2.10) 

Then 

t2) Texp - i t  t2 v)H(z)P(~, d~} U(ll, = ( I~ J,, P(fi' t2) (2.11) 
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If we decompose P(tl, t) due to (2.6), then 

U(q't2)~--Texp-h , H (r )dz  ~'~tl 

Equation (2.12) takes the ordinary form if and only if [H, F] = 0. It is true 
for any time-independent operator H. 

To get the equation for the operator F that corresponds to a dynamical 
variable, we need to take into account that F can be introduced by the set 
of its own eigenfunctions at any moment of time. So, we can introduce an 
operator fiber bundle, and we can consider that the geometrical structures 
of this bundle space are the same as in the above case. To consider the time 
derivative of F we use an equation analogous to (2.9). Then after very simple 
calculations we get 

ihdF--=dt [ F ' H ] + i h U - ' ( P O ( P - ' F P ) ~ - ~ )  U (2.13) 

or in the local form 

dF 
i/i m--- [F, H] + ih ~- [F, F] + . . .  (2.14) 

dt Ot 

This equation is different from the ordinary Heisenberg equation due to the 
second term. It is clear that this fact will lead to some change in the proof 
of Ehrenfest's theorem. We do not discuss the proof here but in the last 
section we will use equation (2.14). 

3. TOPOLOGICAL NATURE OF BERRY'S PHASE 

We mentioned in the Introduction that Berry found that the usual form 
of the quantum adiabatic theorem is not quite valid. He showed that an 
additional phase factor is acquired by the state vector. This new phase 
depends on the geometry of the parameter space. The observable values are 
the average ones from the operators with respect to new eigenvectors. 

To investigate the topological nature of Berry's phase we consider here 
an arbitrary system of frame vectors in a fiber. Let F be an operator, and 
let {If,)} be the set of its eigenvectors in one of the fibers ~ ( t ) .  This 
operator does not determine the unique basis for ~ Yg(t), but it determines a 
set of bases which are different on unitary transformations If ' (_t))~ 
exp[ip(t)]lf,(t)), where the wavy underscore denotes the "instantaneous" 
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fiber. Let us consider the value <f~lV,lf,>. It is clear that for I f ( t ) )  = 
eiPt~ ) 

( f ' lV , l f ' )  - ( f ,  lV,I f , )  = ip(t) #0 (3.1) 

If the eigenvectors form an orthogonal set, then (f~lV,] f~) is the pure imagin- 
ary value. The connection form can be introduced in the ordinary manner 
as  

P(t, t+ &)[fm(t + at))-If , ,> 
r T " =  <f.lV,lf, n> = <f.I lim (3.2) 

otto St 

and the Schr6dinger equation in an arbitrary frame is 

ih Ot ([ f")  ( f.I ~v) ) = H(I f . )  (fnl V) ) (3.3) 

We denote a.(t)= (f.[  ~v); then, after multiplying (3.3) on (fn] and averaging 
we get the equation for an(t), 

aan n ,n i 
= - r , .  a . -  v , .  a , . -  (fnl-:Hlf,.)a.  (3.4) 

Ot 

This equation has a simpler form in the case I f , ) - I E , ) ,  where HIEn)= 
E.]En) ; then 

i i 
(E,]~ HlEm)am =~ Ena, (3.5a) 

and 

(EmlVtlEn) F, m-  if n~m (3.5b) 
Em-E. 

The adiabatic approximation is the condition of the "slow" variation 
of the parameters in the quantum system. This leads to a continuous transi- 
tion of the system from one state to another at an infinite time period, and 
in an infinitely fast transition the system state does not change. From the 
geometrical point of view this is equivalent to the statement that F't~---0 for 
n #rn and F7 #0. Equation (3.4) has a solution in the adiabatic approxima- 
tion, given by 

a.(t)=expl-i ds}exp(i7.) (3.6) 
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where 

fo fo 7,  = - i  F~(s) d~ = - i  (E,  IV,IE,) ds (3.7) 

is a real value which is called "Berry's phase." 
Now we can introduce the natural condition for removability of Berry's 

phase, namely 

i + I'tnn(S) ds=2rcn, n=O,  1, 2 . . . .  (3.8) 
d 

C 

Due to the arbitrariness of the basis eigenfunctions, the condition (3.8) 
is a condition on the topology of the parameter manifold and of our fiber 
bundle. The topological classification of fiber bundles with Ehresmann con- 
nection can be performed (Kiritsis, 1987; Sadun and Segert, 1989). Our 
result (3.8) is the simplest demonstration of the fact that observable conse- 
quences of the nonholonomic structure of state space depend on the existence 
of closed geodesic curves on the parametrical manifold. Now we consider 
some physical applications of this approach. 

4. HARMONIC OSCILLATOR, PARTICLE CREATION, 
AND BERRY'S CONNECTION 

The investigation of quantum particle creation in external fields 
(Ivanenko and Sokolov, 1955; Parker, 1968; Zeldovich and Starobinsky, 
1971) leads to the problem of the parametric excitation of an oscillator (Grib 
et al., 1980). The problems of particle interpretation and vacuum concept 
have been discussed by a number of authors and are given fully by Grib et 
al. (1980). We discuss here only the connection between this effect and 
Bogolubov's transformations in the light of the geometrical approach to 
quantum mechanics and the nonholonomic phase. 

4.1. Matrix Representation 
The Hamiltonian of an oscillator with a time-dependent frequency is 

n(t )  = p2 + Mco2(t) x' (4.1) 
2M 2 

Let us introduce creation and annihilation operators for the instantaneous 
Hamiltonian 

1 [ +0~ 1 
= ~ [ ~  ff~), a+=~ (~'-~) (4.2) a 

where ( = X / Xo and xo( h / M co2) I /2. 
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These operators satisfy the commutator relations 

[a, a]= [a+, a+] =0, [a, a+]=l 

The instantaneous Hamittonian in terms of  a and a + is 

H = hco (t) (a+a + aa +) (4.3) 

At any moment of  time we can find the orthogonal set of  eigenfunctions 

HIE., t> =E.(t)IE., t> (4.4a) 

where 

and H.(~) are 
differential relations 

IE., t ) -  1 _ -~2/2 (4.4b) 
(2"n! x/~x0) 1/2 e H . ( ( )  

Hermite polynomials, which satisfy the usual algebraic- 

Hn(~) = ( -  1)"e ~2 d" e-~2/d~" 

/am+, (~) = 2~H.(~) - 2nil._, (5) 

dH.(~)/d~ = 2nH._~ (5) (4.5) 

E~ t) = tio~( t)(n + �89 

From the geometrical point of view it is possible to define two fiber 
bundles, the state fiber bundle with fiber {IE., t)} and the operator fiber 
bundle with the fiber {a, a* , . . . } .  The creation and annihilation operators 
act in any fiber as 

alE., t)=nl/21E.-i, t) 
(4.6) 

a+lE., t) = (n + 1)l/21E.+,, t)  

The wave function is a section of  the fiber bundle. Then in accordance with 
the ideology of  Section 2 we represent 

iv(x, t))=Z C.(t)lE., t) 
n 

Then F g =  (E. ,  tI(d/dt)lEm, t), and it is easy to verify that only 

n - 2 _  0) 1..n+2= ~" F,, -~-~ [n(n- 1)] 1/2, [ (n+2)(n + 1)] ~/2 (4.7) 
- t .  2co 

are not equal to zero. So, the nonholonomic phase effect is absent at this 
stage. 
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Now let us write down the equations for {C.(t)}. which are conse- 
quences of  (3.4): 

(7o(t) + ~ Eo(t)Co(t)=~-~ 2'/2C2(t) 

Cl(t) + ~  El(t)Ct(t)-~-~-~61/2C3(t) 

�9 i (b { - [ 2 n ( 2 n -  1)]W2C2(n-1)(t) C2.(t) +~ Ea.(t)C2.(t) =~-'~ 

+ [(2n + 1)(2n + 2)]J/2C2(. + l)(t)} 

�9 i (5 { - [2n(2n+ 1)]1/2C2.+1(t) C2.+ ~(t) + ~ E2.+ ,(t)C2. + ,(t) - 

+ [(2n + 2)(2n + 3)]l/2Cz~+3(t)} 

This system can be represented in the compact matrix form 

~C 
iti - -  = (H + i / iF)C 

0t 

where C is a column vector and H and F are matrices, 

I ~ c., 

r=•  
2o) 

H =  

"Eo 0 0 
0 El 0 0 

0 0 E2 0 

0 0 x/2 0 0 

o o o o ~  
-~  o o o o 

0 0 0 0 0 

o - ~  o o 

(4.8) 

(4.9) 

(4.10) 
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So the Schr6dinger equation can be represented in matrix (or energy) form. 
In contrast to the time-independent Hamiltonian, the column function satis- 
fies an equation with an effective Hamiltonian H~fr=H + i/iF. The formal 
solution of (4.9) is 

C exp - i I (H+i l i r )d s }  (4.11) = /. r t j  Co 

The last expression can be rewritten in the form 

C=expl-i-~Hds}exp{fFds} hj (4.12) 

if and only if [H, F] = 0. But it is not valid in every situation. If the commut- 
ator of two operators is equal to zero, this means that these operators have 
a common set of eigenfunctions. But it is obvious that eigenfunctions of H, 

[i 1 0 )  = , Ill [1 ) = , etc. 

will not be e~genfunctions of F. This indicates that one needs to take into 
consideration the contributions of ( F )  in some situations. We can neglect 
these contributions only by a specific choice of state bundle. To show that 
in some situations the nonholonomic contributions can be considerable, we 
consider the coordinate form of F. 

4.2. Coordinate Representation of F 

We denote the eigenfunctions of the effective Hamiltonian H~er = H + ihF' 
as In, t). These functions are column matrices and are governed by the 
equation 

( H +  ihF)l~, t)=Enid,  t) (4.13) 

The new basis {lfi, t)} is not equivalent to the old one {In, t)}, HIn, t ) =  
E, ln, t), and it is clear now that (n, t)lV,In, t ) = 0 ,  but (a, tlV,IrL t ) # 0 .  The 
effective Hamiltonian gives the new spectrum (set of energy levels). Let us 
consider the connection of two spectra {E,} and {Ea}. Taking into account 
(4.13), we get 

(n, tlH~fd_~, t)= (n, tiHr t)(m, tin, t) 
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Then 

(n, tlE~la, t )= ih(n ,  tlFIm, t ) (m,  tl~, t)  

In the adiabatic approximation 

ihrt n = ih(n, tlrln, t)  = E a -  En (4.14) 

Here n = ~, but the tilde is needed to underline the fact that E~ and E, belong 
to different spectra. 

Now it is clear that the nonholonomic phase has a nonlocal nature, 
because it is a function of  different spectra. In the general case the 
discrepancy E a - E ,  is not a unique-valued function and we can make it 
equal to zero. 

Starting from (3.2) and (4.14), we determine the coordinate represen- 
tation of  the connection operator as 

io) O 
F =  (xp + px), p =  - i h  - -  (4.15) 

21io~ Ox 

It is easy to verify that (n, tlFIn, t)  coincides with (4.13), (4.14) if we take 
into consideration the properties of  the Hermite polynomials (4.5). The 
initial problem now can be regarded as a new dynamical system which is 
described by the effective Hamiltonian 

p2 Me~ 2 (b 
H ~  = - -  + - -  x - - -  (xp + px) 

2M 2 2 V 
(4.16) 

Note that this representation was found due to the special choice of  the 
basis in fiber. Let us consider now properties such as the transformations 
{In, t)} ~ {1~, t ) )  in the light of  the appearance and removal of Berry's 
phase and particle creation. 

4.3. Canonical Transformations and Diagonalization of Hamiltonian 

The Hamiltonian (4.16) belongs to a well-investigated class of  Hamil- 
tonians and it is well known that Berry's phase is not equal to zero for such 
systems (Jackiw, 1988). The connection operator F can be rewritten in terms 
of  creation and annihilation operators (4.2) and is 

F=~---" ( a a - a + a  +) (4.17) 
2~ 
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So the effective Hamiltonian takes the form 

H~fr = ~ico(t)(a+aaa +) + i/i ~ (aaa+a +) (4.18) 
zC0 

The diagonalization of (4.18) can be made due to Bogolubov's 
transformations 

b = ~ b * a  - -  ~ a  + 

(4.19) 
b + = O a  + - ~F*a 

where ap(t) and LF(t) are complex functions and I~l 2 -  [~Fl2= 1. 
Let us require the diagonal form of H ~  in terms of new operators, 

namely 

Hofr= Ab+b + D (4.20) 

Then after some algebra we find 

H~fr= ~a~ 1-4T2 b+b + ~  {1 + ~ 1  [1 - (1-4T2)'/2]} (4.21) 
2 

where y = o)/2c92. 
The Hamiltonian (4.21) is the same as the initial Hamiltonian, but with 

a different frequency and vacuum energy level. It is clear that from the 
geometrical point of view this arbitrariness is deeply connected with the 
choice of the holonomic basis in the fiber. Finally we would like to underline 
that the holonomic frames are the eigenfunctions of the diagonal Hamil- 
tonians, but the nonholonomic frames are the eigenfunctions of the non- 
diagonal Hamiltonians. We think that this fact has important physical 
significance since the problem of particle creation is based on a consideration 
of a procedure of Hamiltonian diagonalization. 

5. PARTICLE IN A WELL WITH MOVING WALL 

As an example of a dynamical system with nonstationary boundary 
conditions let us consider a particle in a potential well with a moving wall, 
the potential being 

V(x)=~O, xE[0, L(t)] (5.1) 
, otherwise 

Then the Hamiltonian of the particle inside this well takes the form 
p2 

Ho . . . . .  (5.2) 
2M 
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The quantum state of  the particle is described by the wave function governed 
by the Schr6dinger equation 

ih - ~ =no~,(x,  t) (5.3) 
Ot 

endowed with boundary conditions 

~(x  = O, t) = 0 = ~(x  = L(t), t) 

The wave function ~(x, t) can be decomposed into the sum 

~(x,  t)=~. a.( t)l~'.(x, t) ) 
n 

(5.4) 

where Ig.(x, t ) )  are eigenfunctions of any operators, for example, we can 
take H.] g . (x ,  t))  = E.[ g.(x,  t)).  Let us consider the action of  the O/Ot opera- 
tor on [g.(x, t)).  The usual definition 

Olg.(x, t ) ) _  lim [v/.(x, t +  S t ) ) - [ g . ( x ,  t))  
Ot &-~o ~t 

makes no sense because [g.(x, t + & ) )  and Ig.(x, t))  belong to different 
Ze [2!t(t)j spaces. To determine correctly the action of  the operator O/Ot it is 

ca (2) [O,L(O] �9 necessary to map one ~to,  L(t+at)l on another &a(2) This mapping needs 
to satisfy the standard propert ies--to be smooth, conserve the boundary 
conditions, and the norm of  the wave function. So we are to find a represen- 
tation of  the mapping operator P(q ,  t2) such that 

P: [0, LifO] =~ [0, L(t2)] (5.5a) 

and 

t0,L(t,)lf =~ {I~(X, t2))6Z~'t0,r(t2)l} (5.5b) 

Because [0, L(t)] is parametrized by coordinates x, the action of P in coordi- 
nate representation is 

p:  x ~ x ' = x  L( t0  
L(t2) 

Then a direct calculation leads to the simple infinitesimal form of P acting 
on {IV.(x, t))}, namely 

(5.6) 
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Now we can determine the correct form of the time derivative 

t))= ~ + ~ ( x  ~ + o V,lq,.(x, { " \Oxx Ox x)}l~.(x,t)) (5.7) 

The Schr6dinger equation has the form 

ih V,I Vt(x, t ) ) =  H01~(x, t)) 

or, in a more usual form, 

p2 + s "x +px)}lw(x, t)) (5.8) 

Here we have introduced p = - i l l  O/Ox. 
Equation (5.8) is an improved form of the original one, because the 

time derivative is correctly defined. 
We can consider the right-hand side of (5.8) as a new effective Hamil- 

tonian operator acting on the wave function. The new Hamiltonian is 
equivalent to the Hamiltonian for a charged particle interacting with an 
electromagnetic field due to the "vector" potential 

Mcs 
d ( x ,  t ) = -  x 

QL 

In this case 

h z 0 2 + Q h i ( d  O O___+l - Od)  (5.9) 
Here= 2M Ox 2 Me \ Ox 2 0 x  

So in a quantum system with a time-dependent boundary condition, the 
gauge field appears as a functional of the relative velocity of the well height 
changing in the adiabatic approximation. 

To calculate the eigenfunctions and eigenvalues of the effective Hamil- 
tonian we consider the additional term (/~/2L)(xp + px) as a small perturba- 
tion for the movement of a free particle inside the well. Then in the frame 
of ordinary perturbation theory the eigenfunctions and eigenvalues are 

IV,(x, t)) = ]V~~ t ) )+  [~l)(x, t)) + ' "  

/7(o) E , = ~ ,  + E~') + ' ' '  
(5.10) 
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where 

IV~~ t))=I~(t)] '/zsin[Jrnx]l_L(t)j 

~2~.2n2 
E~ ~ = _ _  2ML(t) 2' 

nE77 

(5.11) 

After some uncomplicated calculations we get 

[ l ~ ( n l ) ( x , t ) >  = sin - i  jr2h ~(k=_n=) 2 sm~-~-- j j  

E~l~ = 8Ms 2 kZn 2 
/r 2 ~ (k 2_ n2)3, k # n 

Now we can find the standard Berry phase and Berry connection 

0 

The exact form of this connection is very complicated and we write here 
only the first term, 

M/~2 
F,. = 2 - -  - -  

n 2 h 

The Berry phase is 

16M I L/~ 
y,,=i f F dt~r~n=~r~ j ~ dL 

So we can see that time-dependent boundary conditions lead to the appear- 
ance of the Berry phase and the shift of energy levels AE, ~ Ms 2. Using 
equation (2.14), we find (Ox/Ot)= L/2. 

6. CONCLUSIONS 

We have considered here the nonholonomic properties of dynamical 
systems with time-dependent Hamiltonian and boundary conditions, Using 
fiber bundle concepts makes it possible to study the evolution problem in 
a geometrical way. We showed that the Heisenberg equations should be 
supplemented by new geometrical type terms. 
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We conclude that the removability of Berry's phase due to the diagonali- 
zation of the Hamiltonian leads to an energy level shift and can be observed 
as a dynamical effect. 

Moreover, we remark that the geometrical description can be extended 
to systems with nonstationary boundary conditions. The corresponding 
Berry phase was calculated, and the energy level shift was found. 

In the work of Doescher and Rice (1969) the problem of a particle in 
a one-dimensional infinite square-well potential was considered when the 
velocity of the moving wall is constant. The exact solution of the Schr6dinger 
equation (5.3) with time-dependent boundary conditions was obtained. 

The recent work of Pinder (1990) was devoted to the extension of the 
method proposed first by Doescher and Rice (1969) for the case when the 
wall velocity is not constant. The author used perturbation theory. But we 
think that this is not the only method to solve the problem. Moreover, we 
consider that the application of perturbation theory in this case can lead to 
ambiguities, because a good mathematical description is constructed for the 
Hamiltonians Hj = H0 + eV(x, t) when the eigenfunctions of H~ become the 
eigenfunctions of H0 in the limit e---, 0. At the same time, a small change of 
boundary conditions can lead to an essential change of the initial eigen- 
functions. That is why we reformulated the problem through the effective 
Hamiltonian. This gives us grounds for using perturbation theory and calcu- 
lating the nonholonomic effects. 

Inanother approach (Greenberger, 1988) the extra phase was derived 
by changing coordinates. We think that these two results (Greenberger's and 
ours) are two aspects of the same problem. But in Greenberger's work the 
so-called "phase factor" depends on both time and coordinates, so in our 
opinion it cannot be called a true "extra geometrical phase factor," since it 
is only part of the wave function. In our treatment the extra phase is the 
true "topological phase" obtained in Berry's spirit, and can be connected 
with the appearance of the additional gauge structure. 

We believe that the use of geometrical conceptions for quantum systems 
with varying parameters will be a powerful tool, especially in the investiga- 
tion of quantum measurement problems. We intend to discuss these prob- 
lems in a forthcoming paper. 
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